

Rails Meets React JSX

Arkency

© 2016 Arkency

Contents

Anatomy of the React component . 1
State . 1
Properties . 5
Component children . 14
render method . 17
Mixins . 20
Context . 21
References (refs) to components . 24
Desugaring JSX . 27

Anatomy of the React component
Let’s see a really simple example of a React component:

1 class Greeter extends React.Component {

2 render() {

3 return (

4

5 {`Hello, ${this.state.name}!`}

6

7);

8 }

9 }

To master React, you need to know the component’s structure. Basically, components in React are
made of three basic parts:

• state - React components maintain their dynamic part of data separated from the static data
for performance reasons. Manipulating components is done by changing the state — doing so
forces React to re-render a component.

• properties - React components get properties in the moment they are instantiated. You can
use them to create the initial state and set values that need to be accessible and are constant
through the whole lifecycle of a component.

• render method - The render method should always return a React component. It has access
to properties and state and they (and only they) decide what will be the outcome of the render
method. The render method should only generate HTML and assign key/refs/event handlers
to it. If you generate it using only state and properties, you achieve what React developers call
“side-effect free render method”. You should aim to do so every time — it makes React faster,
makes your development and testing easier.

That’s it. These three parts need to be present in all React components you create. Of course it is not
all - React components come with some additional features that will be discussed later.

State

In the world of dynamic user interfaces the “user interface is stateless” statement (which template
libraries like Handlebars or Mustache repeat like a mantra) is hard to defend — the more complex

Anatomy of the React component 2

UI, the harder it may be to defend it. React developers know it — that’s why they made component’s
state one of the most important concepts in the whole library.

Even the simplest input mechanism in browsers has state.

Changing state should be the only way to re-render your component, resulting in a visible change —
state is available during rendering of the component and in lifecycle methods of it (discussed later).
You may think of it as ‘dynamic data’ of a component — with an additional side-effect: Changing
state forces re-rendering of component.

By default, when instantiating a component, the state is empty — it is a null value. You can change
it using the setState method which every component has. Note that you cannot manipulate the
state of unmounted components. All components start as unmounted — you must explicitly call
the ReactDOM.render method to make it mounted which allows you to use setState and other
component’s instance methods.

State is accessible in most component methods under this.state instance variable. In the Greeter
component you directly access the name field of the this.state inside render method.

Common mistakes

Consider this small snippet of code.

Anatomy of the React component 3

1 class Greeter extends React.Component {

2 render() {

3 return (

4

5 {`Hello, ${this.state.name}!`}

6

7);

8 }

9 }

10

11 $(() => {

12 const greeter = <Greeter />;

13 greeter.setState({ name: 'Johny' }); // ?

14 });

In this case the setState invocation results in an error since elements do not have state. Only the
rendered components have state. Calling setState in such situation will result in an error.

Here is another, more tricky example.

1 class Greeter extends React.Component {

2 render() {

3 return (

4

5 {`Hello, ${this.state.name}!`}

6

7);

8 }

9 }

10

11 $(() => {

12 const component = ReactDOM.render(

13 <Greeter />,

14 document.getElementById('greeter-placeholder')

15);

16 component.setState({ name: 'Johny' }); // ?

17 });

ReactDOM.render will throw the null is not an object exception. Why is that? Because React-
DOM.render calls the render method from the component that is being mounted. Remember that
this.state by default is null. So calling this.state.name inside the rendermethod raises an error
in such situation.

If render finished successfully it’d be absolutely fine to ask for the state change. To fix this code,
you need to know how to provide the initial state to our components. Let’s see how to do this.

Anatomy of the React component 4

Setting initial state

Since state in components is null by default, it’d be hard to make something meaningful with React
if there was no way to have control the initial state. In fact, without such control you wouldn’t
be able to create any dynamic components at all. Since there will be only properties available and
properties are static, they shouldn’t change. You can achieve it by setting initial state in components
constructor, this way it is used before any setState happens.

Setting initial state in a constructor allows you to use Greeter component

1 class Greeter extends React.Component {

2 constructor(props) {

3 super(props);

4 this.state = {

5 name: 'World'

6 };

7 }

8

9 render() {

10 return (

11

12 {`Hello, ${this.state.name}!`}

13

14);

15 }

16 }

After this change to the Greeter component our last example is going to work as expected:

1 const greeter = <Greeter />;

2

3 const component = ReactDOM.render(

4 greeter,

5 document.getElementById('greeter-placeholder')

6);

7 // Hello, World! will be

8 // placed inside #greeter-placeholder element, overriding previous content.

9

10 component.setState({ name: 'My first component' });

11 // Component is re-rendered, so it results in "Hello, my first React component!"

12 // as opposed to "Hello, World!" you had before.

The important part here is that you can use properties to instantiate the initial state. That means
you can easily make defaults overridden.

Anatomy of the React component 5

Maintaining good state

What data should be stored inside the state? There are a few rules of thumb:

1. Data which we’d like to change in order to force re-render the component. That’s the idea
behind state after all!

2. You should rather store ‘raw data’ which allows you to compute all needed further data
representations in the rendermethod. State is not a place to duplicate data since it’s our main
source of truth you want to keep it as consistent as possible. The same applies to properties. If
you are thinking about which of the two things you should put into the state — A or B and B
can be computed from A, you should definitely store A in the state and compute B in render

method.
3. No components in state. Components should be created in the render method based on

the current state and properties provided. Storing components in state is discouraged and
considered as an anti-pattern.

4. Things that you need to dispose when component dies. Especially important in integration
with external libraries.

If your component is keeping reference to 3rd party library object (for example carousel, popup,
graph, autocomplete) you need to call remove() (or some kind of equivalent of it) on it when the
React component is unmounted (removed from a page). You can define your clean-up algorithm,
overriding the default componentWillUnmount method. This method will be called just before
unmounting your component.

Properties

You have seen that you can go quite deep even without knowing what properties are. But properties
are a very helpful part of all React components you are going to create. The basic idea is that they
are data which have to be unchanged during the whole lifecycle of the component — whether to
instantiate a default state or to reference this data while defining component’s behaviour and the
render outcome. You may think about them as ‘constants’ in your component — you may reference
them during rendering or setting component’s behaviour, but you shouldn’t change them.

React developers often say that properties are immutable. That means that after construction of
the component they stay the unchanged. Forever. If it’s a complex object you can of course invoke
methods on it — but it is only because it’s hard to ensure for React that something changed. React
assumes that changes to properties never happen. Changing properties, even by invoking methods
on it is considered an anti-pattern.

You pass properties during construction of an element. With JSX it’s done this way:

Anatomy of the React component 6

1 <Component properties>children</Component>

Properties are accessible even in elements via the this.props field. As I mentioned before, you can
also use them in constructor to parametrize default state creation:

Example: Passing a parameter to instantiate default state

1 class Greeter extends React.Component {

2 constructor(props) {

3 super(props);

4 this.state = {

5 name: this.props.initialName || 'World'

6 };

7 }

8

9 render() {

10 return (

11

12 {`Hello, ${this.state.name}!`}

13

14);

15 }

16 }

17

18 $(() => {

19 let component;

20 const rootNode = document.getElementById('greeter-box');

21

22 component = ReactDOM.render(<Greeter />, rootNode);

23 // Hello, World!

24

25 component = ReactDOM.render(<Greeter initialName="Andy" />, rootNode);

26 // Hello, Andy!

27

28 component.setState({ name: 'Marcin' });

29 // Hello, Marcin!

30 });

This use case is a quite common usage of properties. Another common usage is to pass dependencies
to components:

Anatomy of the React component 7

Example: Metrics tracking tool needs to be notified about user decision of reading full content of blogpost.

1 class BlogPost extends React.Component {

2 constructor(props) {

3 super(props);

4 this.state = {

5 fullContentVisible: false

6 };

7 }

8

9 continueReadingClicked() {

10 if (!this.state.fullContentVisible) {

11 this.props.metricsAdapter.track('full-content-hit');

12 }

13 this.setState({ fullContentVisible: true });

14 }

15

16 render() {

17 return (

18 <div className="blog-content">

19 <h1 className="title" key="blog-title">

20 {this.props.blogpost.title}

21 </h1>

22 <p className="lead" key="blog-lead">

23 {this.props.blogpost.lead}

24 </p>

25

26 Continue reading ->

27

28 {this.state.fullContentVisible ?

29 <div key="blog-full-content">

30 {this.props.blogpost.fullContent}

31 </div> : null

32 }

33 </div>

34);

35 }

36 }

37

38

39 const post = <BlogPost metricsAdapter={this.googleAnalyticsAdapter} />;

40 const componentInstance = ReactDOM.render(post, document.getElementById('blog'));

Anatomy of the React component 8

Properties allow you to store all references that are important for our component, but do not change
over time.

You can use properties alone to create React components for your static views. Such components are
called stateless components — and should be used as often as possible.

Stateless components

In our previous examples you were using components from the React library which are provided
to create basic HTML tags you know and use in static pages. If you look at them closely you may
notice that they are stateless. You pass only properties to elements of their type and they maintain
no state. State is an inherent part of more dynamic parts of your code. However it is advisable to
keep ‘display data only’ components stateless. It makes code more understandable and testable and
it’s generally a good practice.

Displaying person information does not need state at all

1 class PersonInformation extends React.Component {

2 person() {

3 return this.props.person;

4 }

5

6 render() {

7 return (

8 <div className="person-info">

9 <header key="info-header">

10 <img

11 alt=""

12 className="person-avatar"

13 key="avatar"

14 src={this.person().avatarUrl}

15 />

16 <h2 className="person-name" key="full-name">

17 {this.person().fullName}

18 </h2>

19 </header>

20 </div>

21);

22 }

23 }

The rule of thumb here - when possible, create stateless components.

Anatomy of the React component 9

Stateless functional components in React 0.14

React 0.14 now supports stateless components as simple functions¹. Which is especially useful with
ES2015 (ES6) and JSX syntax.

1 // A functional component using an ES2015 (ES6) arrow function:

2 var Header = (props) => {

3 return <h2 className="header">{props.text}</h2>;

4 };

5

6 // Or with destructuring and an implicit return, simply:

7 var Header = ({text}) => (

8 <h2 className="header">

9 {text}

10 </h2>

11);

Setting default properties

It is often helpful to create some kind of default state — while it is not necessary, it may reduce
conditionals in your code, making it easier to read and maintain. Default properties can be set with
defaultProps as in next example.

Unnecessary or statement can be avoided here with setting default state.

1 class Greeter extends React.Component {

2 constructor(props) {

3 super(props);

4 this.state = {

5 name: this.props.initialName || 'World'

6 };

7 }

8

9 render() {

10 // ...

¹https://facebook.github.io/react/blog/2015/10/07/react-v0.14.html#stateless-functional-components

https://facebook.github.io/react/blog/2015/10/07/react-v0.14.html#stateless-functional-components
https://facebook.github.io/react/blog/2015/10/07/react-v0.14.html#stateless-functional-components

Anatomy of the React component 10

Fixed version of the code above.

1 class Greeter extends React.Component {

2 constructor(props) {

3 super(props);

4 this.state = {

5 name: this.props.initialName

6 };

7 }

8

9 render() {

10 // ...

11 }

12 }

13 Greeter.defaultProps = { initialName: 'World' };

You may also find it useful to use this method to improve declarativeness of your render method
with this neat trick:

Avoiding conditionals in render method would make it shorter and easier to comprehend.

1 class OnOffCheckboxWithLabel extends React.Component {

2 constructor(props) {

3 super(props);

4 this.state = {

5 toggled: props.initiallyToggled

6 };

7 this.toggle = this.toggle.bind(this);

8 }

9

10 toggle() {

11 this.setState({ toggled: !this.state.toggled });

12 }

13

14 render() {

15 return (

16 <div className="on-off-checkbox">

17 <label htmlFor={this.props.id} key="label">

18 {this.state.toggled ?

19 this.props.onLabel

20 :

21 this.props.offLabel

22 }

Anatomy of the React component 11

23 </label>

24 <input

25 key="checkbox"

26 type="checkbox"

27 id={this.props.id}

28 checked={this.state.toggled}

29 onChange={this.toggle}

30 />

31 </div>

32);

33 }

34 }

35 OnOffCheckboxWithLabel.defaultProps = {

36 onLabel: 'On',

37 offLabel: 'Off',

38 id: 'toggle',

39 initiallyToggled: false

40 };

This neat trick allows you to avoid conditional in label.

1 class OnOffCheckboxWithLabel extends React.Component {

2 // ...

3

4 render() {

5 // ...

6 <label htmlFor={this.props.id} key="label">

7 {this.props.labels[this.state.toggled]}

8 </label>

9 // ...

10

11 }

12 }

13 OnOffCheckboxWithLabel.defaultProps = {

14 onLabel: 'On',

15 offLabel: 'Off',

16 id: 'toggle',

17 labels: {

18 true: 'On',

19 false: 'Off'

20 },

21 initiallyToggled: false

22 };

Anatomy of the React component 12

Properties defined in defaultProps are overridden by properties passed to an element.
That means setting messages or strings in default properties makes our components powerfully
configurable out-of-the-box. It greatly improves reusability.

You can use our on/off toggle with more sophisticated labels for free with default properties approach.

1 const coolFeatureToggle = <OnOffCheckboxWithLabel

2 id="cool-feature-toggle"

3 labels={{ true: 'Cool feature enabled', false: 'Cool feature disabled' }}

4 />;

As you can see, relying on default properties can have many advantages for your component. If you
do not want to have configurable messages, you can create a method inside the component and put
the labels object there. I like to have sensible defaults and to provide ability to change it to match
my future needs.

Validating properties

You may validate what kind of properties were sent to the component. Which can be beneficial,
especially in a case when the component is reused in many places.

All you have to do is define a value propTypes (being a plain object) in your component. Every
key in propTypes represents a property to validate, while a value says what kind of validation it is.
Effect? When a property is invalid, a warning shows in the JavaScript console.

That’s a very powerful mechanism, but appears only in development mode.

React comes with built-in validators such as:

• JS primitive type, e.g. string:

property: React.PropTypes.string

• Custom type:

property: React.PropTypes.instanceOf(MyClass)

• Enum:

property: React.PropTypes.oneOf(['Foo', 'Bar']),

Anatomy of the React component 13

• Presence:

property: React.PropTypes.any.isRequired

(or simply isRequired chained to any of above)

You can also define your custom validators. The point is: it should return an Error object if the
validation fails.

An example of custom validator.

1 const customProp = (props, propName, componentName) => {

2 if (!/matchme/.test(props[propName])) {

3 return new Error('Validation failed!');

4 }

5 };

After defining such, you can use it instead of functions from React.PropTypes:

Usage of custom validator.

1 const customProp = (props, propName, componentName) => {

2 if (!/matchme/.test(props[propName])) {

3 return new Error('Validation failed!');

4 }

5 };

6

7 Blogpost.propTypes = {

8 // name: React.PropTypes.string.isRequired

9 name: customProp

10 };

To see more of the possible validations, visit Prop Validation section on the official docs².

²https://facebook.github.io/react/docs/reusable-components.html#prop-validation

https://facebook.github.io/react/docs/reusable-components.html#prop-validation
https://facebook.github.io/react/docs/reusable-components.html#prop-validation

Anatomy of the React component 14

Validations in action.

1 class Blogpost extends React.Component {

2 render() {

3 return (

4 <div>

5 <div>

6 {this.props.name}

7 </div>

8 <div>

9 {`Type: ${this.props.type}`}

10 </div>

11 <div>

12 {this.props.date.toDateString()}

13 </div>

14 <div>

15 {this.props.content}

16 </div>

17 </div>

18);

19 }

20 }

21

22 Blogpost.propTypes = {

23 name: React.PropTypes.string.isRequired,

24 date: React.PropTypes.instanceOf(Date),

25 type: React.PropTypes.oneOf(['Post', 'Ad']),

26 content: React.PropTypes.any.isRequired

27 };

28

29 $(() => {

30 ReactDOM.render(<Blogpost

31 content="This is a short blogpost about the props validation in React"

32 date={new Date(2015, 9, 30)}

33 name="John Doe"

34 type="Post"

35 />, document.getElementById('blog'));

36 });

Component children

Let’s look at the React component instance creation with JSX.

Anatomy of the React component 15

1 <Component properties>children</Component>

While you already have detailed knowledge about properties, the children argument remains a
mystery until now. As you may know, HTML of your web page forms a tree structure — you have
HTML tags nested in another tags, which nest another tags and so on. React components can have
exactly the same structure — and that’s what the children attribute is for. You can include children
simple between the opening and closing tags — it’s up to you what you’ll do with it. Typically you
pass an array of components or a single component there. Such children components are available
in a special property called children:

Using children in HTML5 React components

1 return (

2 <div className="on-off-checkbox">

3 <label htmlFor={this.props.id} key="label">

4 {this.props.labels[this.state.toggled]}

5 </label>

6 <input

7 key="checkbox"

8 type="checkbox"

9 id={this.props.id}

10 checked={this.state.toggled}

11 onChange={this.toggle}

12 />

13 </div>

14);

You can access children using a special children field inside properties.

1 class WhoIsInvited extends React.Component {

2 render() {

3 return (

4 <div className="who-is-invited-box">

5 <h3 className="who-is-invited-header" key="header">

6 You"ve invited this people to tonight"s pajama party:

7 </h3>

8 <ul className="who-is-invited-list" key="invited-list">

9 {this.props.children.map(function (personInformationComponent) {

10 return (

11 <li

12 className="who-is-invited-list-item"

13 key={`person-${personInformationComponent.person().id}}`}

14 >

Anatomy of the React component 16

15 {personInformationComponent}

16

17);

18 })}

19

20 </div>

21);

22 }

23 }

24

25 invitations = (

26 <WhoIsInvited>

27 <KidInformation />

28 <AdultInformation />

29 <AdultInformation />

30 </WhoIsInvited>

31)

32

33 // this.props.children of invitations component will contain

34 // [KidInformation(...), AdultInformation(...), AdultInformation(...)] array.

This feature allows you to easily create some kind ofwrapper components (I call it open components)
like a list above. It’s quite common to have these kind of user interface elements — many well-
established generic UI solutions can be implemented this way. For example — accordion boxes,
drop-down menus, modals… all of these generic solutions you know and use can follow this pattern,
since they are generally ‘containers’ to our content.

Accordion boxes are great candidates to be implemented as open components in React.

Properties and state are away of React component to handle datawhich can be a result of user actions
or events from the external world (messaging mechanism like Pusher, AJAX calls, websockets, etc.).
While state is all about dynamism of components (and that’s why you have switched from

Anatomy of the React component 17

Rails views to frontend applications after all), properties allow you to provide data for more
‘static’ purposes in our component.

rendermethod

Last, but not least, all React components must have the render method. This method always
returns a React component. Since you compose your component from smaller components (with
HTML5 components e.g. div, span as leafs of your ‘components tree’) it is an understandable
constraint here.

It can return false or null as well. In such case React will render an invisible <noscript> tag.

What is important, you should never call the render method explicitly. This method is called
automatically by React in these two situations:

• If the state changes. It also calls componentDidUpdate method.
• If youmount component using ReactDOM.render. It also calls the componentDidMountmethod.

The lifecycle methods such as the mentioned componentDidMount and componentDidUpdate will be
discussed later in the book.

An important assumption that React makes about your rendermethod is that it is idempotent - that
means, calling it multiple times with the same properties and state will always result in the same
outcome.

React components style (especially with JSX syntax extension) resembles HTML builders a bit.

What you achieve with state and properties is dynamic nature of this HTML - you can click on
something to make an action, change the rendering of this HTML and so on. It looks really familiar
to what you may find in .html.erb view files:

Example of ERB view

1 <section class='container'>

2 <h1><%= post.title %></h1>

3 <h2><%= post.subtitle %></h1>

4 <div class='content'>

5 <%= post.content %>

6 </div>

7 </section>

Anatomy of the React component 18

React counterpart

1 <section className="container">

2 <h1>{this.state.post.title}</h1>

3 <h2>{this.state.post.subtitle}</h2>

4 <div className="content">

5 {this.state.post.content}

6 </div>

7 </section>

What you should do in the render method is:

• Computing the auxiliary data youmay need in your user interface from state and properties.
You should not cache this result in those places. I’d recommend to only call computation
methods and never inline this logic inside render.

Example of precomputing values in render method.

1 class PersonGreeter extends React.Component {

2 constructor(props) {

3 super(props);

4 this.state = {

5 person: new Person('Bruce', 'Wayne')

6 };

7 }

8

9 personFullName(person) {

10 return [person.firstName, person.lastName].join(' ');

11 }

12

13 greeterSpan(children) {

14 return (

15 <div className="greeter-text">

16 {children}

17 </div>

18);

19 }

20

21 greeterBox(children) {

22 return (

23 <div className="greeter-box">

24 {children}

25 </div>

Anatomy of the React component 19

26);

27 }

28

29 render() {

30 // Computing full name of person

31 const fullName = this.personFullName(this.state.person);

32

33 return (

34 <div>{this.greeterSpan(`Hello, ${fullName}!`)}</div>

35);

36 }

37 }

• Creating components based on properties and state. Since you should never store com-
ponents in state or properties, the React way is to construct components inside the render

method.

Creating components based on properties and state.

1 class BooksListItem extends React.Component {

2 render() {

3 const name = this.props.book.name;

4 return (

5 <li key={name} >{name}

6);

7 }

8 }

9

10 class BooksList extends React.Component {

11 render() {

12 return (

13 <ul className="book-list">

14 {this.props.books.map(function (book) {

15 // You create components from books in our properties.

16 return (<BooksListItem book={book} />);

17 })}

18

19);

20 }

21 }

• Define the HTML structure of a user interface part. That means you can compose the
return value from HTML5 components directly or with higher level components. Eventually
it is transformed into HTML.

Anatomy of the React component 20

Do not try to memoize data in the render method. Especially components. React is managing
the component’s lifecycle using its internal algorithm. Trying to re-use component by hand is asking
for trouble, since it is easy to violate React rules for re-rendering here.

Mixins

Mixins are not supported for ES6 classes in React.

Basically, mixins are the snippets of code that can be shared bymany components. The mixin objects
can contain both variables and functions (which can be included to a component as, respectively,
properties and methods).

Mixins can define lifecycle methods (if you are not familiar, jump to Lifecycle methods), and they
do it smartly. As the Mixins section on official docs³ says:

A nice feature of mixins is that if a component is using multiple mixins and several
mixins define the same lifecycle method (i.e. several mixins want to do some cleanup
when the component is destroyed), all of the lifecycle methods are guaranteed to be
called. Methods defined on mixins run in the order mixins were listed, followed by a
method call on the component.

See this on an example:

A mixin defining lifecycle methods

1 const loggingAtMountingMixin = {

2 componentWillMount() {

3 console.log('Component about to be mounted...');

4 },

5 componentDidMount() {

6 console.log('Component mounted');

7 }

8 };

9

10 const MyComponent = React.createClass({

11 mixins: [loggingAtMountingMixin],

12 render() {

13 return null;

14 }

15 });

There are two mixins predefined in React.addons:

³https://facebook.github.io/react/docs/reusable-components.html#mixins

https://facebook.github.io/react/docs/reusable-components.html#mixins
https://facebook.github.io/react/docs/reusable-components.html#mixins

Anatomy of the React component 21

• PureRenderMixin⁴ - to boost performance under certain circumstances
• LinkedStateMixin⁵ - to express two-way binding

Context

Context⁶ is another way (beside properties) to pass a value to a child component. The difference
between context and props is: once set, context is being passed all the way down, to all the
descendants.

When you want the whole subtree to have an access to the same “attribute”, you can use context -
instead of passing the same property again and again.

For example, consider a single component that renders a user. This component has many sub-
components as its children - usually, having many small components instead of a huge one is a good
practice. Unfortunatelly, the small sub-components don’t have an access to the user variable. To
pass it, you can use context:

1 class UserComponent extends React.Component {

2 getChildContext() {

3 return { user: this.props.user };

4 }

5

6 render() {

7 return (

8 <div>

9 <Header />

10 <Avatar />

11 <Ranking />

12 <Stats />

13 </div>

14);

15 }

16 }

17 UserComponent.childContextTypes = {

18 user: React.PropTypes.object

19 };

20

21 class Header extends React.Component {

22 render() {

⁴https://facebook.github.io/react/docs/pure-render-mixin.html
⁵https://facebook.github.io/react/docs/two-way-binding-helpers.html
⁶https://facebook.github.io/react/docs/context.html

https://facebook.github.io/react/docs/pure-render-mixin.html
https://facebook.github.io/react/docs/two-way-binding-helpers.html
https://facebook.github.io/react/docs/context.html
https://facebook.github.io/react/docs/pure-render-mixin.html
https://facebook.github.io/react/docs/two-way-binding-helpers.html
https://facebook.github.io/react/docs/context.html

Anatomy of the React component 22

23 return (

24 <h1>{this.context.user.name}</h1>

25);

26 }

27 }

28 Header.contextTypes = {

29 user: React.PropTypes.object

30 };

31

32 class Avatar extends React.Component {

33 render() {

34 return (

35

36

37

38);

39 }

40 }

41 Avatar.contextTypes = {

42 user: React.PropTypes.object

43 };

44

45 class Stats extends React.Component {

46 render() {

47 return (

48 <div>

49 Won {this.context.user.won}

50

51 Lost {this.context.user.lost}

52

53

54 (see the whole stats of {this.context.user.name})

55

56 </div>

57);

58 }

59 }

60 Stats.contextTypes = {

61 user: React.PropTypes.object

62 };

63

64 class Ranking extends React.Component {

Anatomy of the React component 23

65 render() {

66 return (

67 <h2>

68

69 Ranking

70

71 </h2>

72);

73 }

74 }

75 Ranking.contextTypes = {

76 user: React.PropTypes.object

77 };

78

79 const amalie = {

80 id: 1,

81 name: 'Amalie',

82 avatarUrl: 'http://www.example.org/avatar/123',

83 won: 13,

84 lost: 7,

85 ranking: 14,

86 };

87

88 $(() => {

89 ReactDOM.render(<UserComponent user={amalie} />, document.body)

90 });

The UserComponent declares the values in the context for its descendants via getChildContext

object. Also the types of each value must be specified in child contextTypes. The mechanism for
definig the types is the same as for validating properties - React.PropTypes.

Components have this.context being an empty object - {} - by default. Sub-components must
explicitly declare (in contextTypes) which parts of the context they will access, otherwise they
won’t be able to use it.

It’s OK not to declare contextTypes if a component doesn’t need any value from the context. If you
refer to this.context.attribute in a child rendermethod, without specifying the attribute type
in contextTypes, you will get an error.

The parent component has no access to its own context - it is meant for the child components only. If
you need the context from the outermost component, you have to wrap it within another component,
which defines getChildContext and childContextTypes.

A context can be extended by new values in a sub-component, and existing values can be overwriten.

Anatomy of the React component 24

References (refs) to components

Every component can have a ref attribute set. Its value can be one of two types, each having a
different purpose:

ref as a string

Every component has this.refs property which contains references to mounted child components
with ref attribute set. The value of ref identifies the component in parent’s this.refs. For example,
ref: 'anInput' converts to this.refs.anInput.

So this.refs are a shoutcut to some of child components. Often they are used for finding the DOM
node from a child component, like this:

ReactDOM.findDOMNode(this.refs.focusableContainer)

As said before, you can only access the components that are alreadymounted. If you want to access a
ref as soon as possible, you should use componentDidMount lifecycle method (if you are not familiar,
jump to Lifecycle methods).

See the whole example, where exactly this mechanism is used. This is a wrapper for a casual HTML
input tag. The wrapper makes sure that after the input is rendered the browser’s focus will be on it.

1 class FocusableWrapper extends React.Component {

2 componentDidMount() {

3 ReactDOM.findDOMNode(this.refs.focusableContainer).children[0].focus();

4 }

5

6 render() {

7 return (

8 <div

9 ref="focusableContainer"

10 >

11 {this.props.children}

12 </div>

13);

14 }

15 }

In most cases using this.refs can be avoided by using natural data-flowmechanisms like callbacks,
props or events. This is why Refs to Components section of the React docs⁷ comments string-refs as
mostly legacy at this point.

ref as a string may be also useful in testing - see Testing with references.

⁷https://facebook.github.io/react/docs/more-about-refs.html#the-ref-string-attribute

https://facebook.github.io/react/docs/more-about-refs.html#the-ref-string-attribute
https://facebook.github.io/react/docs/more-about-refs.html#the-ref-string-attribute

Anatomy of the React component 25

DOM node refs

Since React 0.14 refs to DOM (HTML5) components are exposed as the browser DOM node itself.
Note that refs to custom (user-defined) components work exactly as before; only the built-in DOM
components are affected by this change.

Our focusableContainer is a div tag, a built-in DOM component, not a custom one. We don’t need
to use ReactDOM.findDOMNode(this.refs.focusableContainer), altough it won’t hurt. Instead,
this.refs.focusableContainer will suffice.

1 class FocusableWrapper extends React.Component {

2 componentDidMount() {

3 this.refs.focusableContainer.children[0].focus();

4 }

5

6 render() {

7 return (

8 <div

9 ref="focusableContainer"

10 >

11 {this.props.children}

12 </div>

13);

14 }

15 }

ref as a function

In particular - a callback function. It will be called immediately after the component is mounted.
The callback can take an argument - the referenced component.

1 class FocusableWrapper extends React.Component {

2 render() {

3 return (

4 <div

5 ref={function (div) {

6 if (div) { ReactDOM.findDOMNode(div).children[0].focus(); }

7 }}

8 >

9 {this.props.children}

10 </div>

11);

12 }

13 }

Anatomy of the React component 26

One thing to remember is (after the Refs to Components section of the React docs⁸): when the
referenced component is unmounted and whenever the ref changes, the old ref will be called with
null as an argument.

So if we define a callback like that, in the render method, the callback will be a new function in
every re-render. It means that when the component is re-rendered, the ref callback function defined
in previous render would be called with a null argument, and the ref callback function defined in
current call of render would be called with non-null argument.

This is why we have the condition (if div). You might think we could avoid it by defining the
callback once, in the component - instead of inside the render method.

1 class FocusableWrapper extends React.Component {

2 focusCallback(div) {

3 ReactDOM.findDOMNode(div).children[0].focus();

4 }

5

6 render() {

7 return (

8 <div

9 ref={this.focusCallback}

10 >

11 {this.props.children}

12 </div>

13);

14 }

15 }

This is beneficial because re-render does not define a new function so it avoids problems mentioned
in previous paragraph. But focusCallback can be called with null when FocusableWrapper

component is unmounted. So in the end we need that if anyway.

1 class FocusableWrapper extends React.Component {

2 focusCallback(div) {

3 if (div) {

4 ReactDOM.findDOMNode(div).children[0].focus();

5 }

6 }

7

8 render() {

9 return (

10 <div

⁸https://facebook.github.io/react/docs/more-about-refs.html#the-ref-callback-attribute

https://facebook.github.io/react/docs/more-about-refs.html#the-ref-callback-attribute
https://facebook.github.io/react/docs/more-about-refs.html#the-ref-callback-attribute

Anatomy of the React component 27

11 ref={this.focusCallback}

12 >

13 {this.props.children}

14 </div>

15);

16 }

17 }

Desugaring JSX

React.DOM.tagName(properties, children)

Instead of using JSX syntax we could write React.DOM.div({}, "Hello world!"). React.DOM is
a namespace for components representing HTML5 tags. The most obvious one is React.DOM.div.
They are not real HTML5 tags. They are just their representation.We can use them to describe
what actual tags should be rendered by React in the browser.

Example

Desugaring JSX is quite easy. Consider the following JSX example (taken from the official docu-
mentation):

JSX example to desugar

1 <div>

2 <ProfilePic key="pic" username={this.props.username} />

3 <ProfileLink key="link" username={this.props.username} />

4 </div>

For each component, JSX is composed this way:

JSX is composed like this.

1 <ComponentName property1=value1 property2=value2 ...>[children]</ComponentName>

2 or:

3 <ComponentName property1=value1 property2=value2 ... /> // children set to null

There is a special notation inside curly brackets for a runtime evaluation.

That means the previous JSX desugars to this:

Anatomy of the React component 28

Desugared JSX example

1 const profilePic = React.createFactory(ProfilePic);

2 const profileLink = React.createFactory(ProfileLink);

3

4 React.DOM.div({}, [

5 profilePic({key: 'pic', username: this.props.username)},

6 profileLink({key: 'link', username: this.props.username})

7])

Desugared JSX example (inlined)

1 React.DOM.div({}, [

2 React.createElement(ProfilePic, {key: 'pic', username: this.props.username }),

3 React.createElement(ProfileLink,{key: 'link', username: this.props.username})

4])

You can also use JSX compiler⁹ from the official site.

Summary

In this chapter you learned about the three main building blocks of React components — state,
properties and render method. This alone is a very complete knowledge that you can use straight
away. Since you know how to create a component, feed it with data and manipulate it, you can
make fairly complex components even now. What you lack is mastering how to handle actions to
user and the external world. The next chapter is all about it.

⁹http://facebook.github.io/react/jsx-compiler.html

http://facebook.github.io/react/jsx-compiler.html
http://facebook.github.io/react/jsx-compiler.html

	Table of Contents
	Anatomy of the React component
	State
	Properties
	Component children
	render method
	Mixins
	Context
	References (refs) to components
	Desugaring JSX

