

Frontend-friendly Rails

Arkency

© 2016 Arkency

Contents

Prepare JSON API endpoints for your API . 1
Why JSON API? . 1
JSON API in Rails . 2
Example Relationships . 2
Schema used for this examples . 2
Installing jsonapi-serializers . 4
Crafting a serializer . 4
Defining relationships between resources . 7
Integrating jsonapi-serializers with controllers . 13
Configuring clients to issue JSON API requests . 17
Tips and tricks . 19
Summary . 20

3 ways to do eager loading (preloading) in Rails 3 & 4 . 21
Rails 3 . 21
Is this intention revealing? . 23
Is #preload any good? . 24
Preloading subset of association . 25
The ultimate question . 27
Rails 4 changes . 27
Summary . 31

Creating new content types in Rails 4.2 . 33
Registering the new Content-Type . 33
Specifying how params should be parsed - ActionDispatch::ParamsParser middleware . . 35
Summary . 37

Prepare JSON API endpoints for your
API
Endpoints are the most important part of the backend for your frontend applications. No matter
how sophisticated your backend can be, frontend is not concerned about it. All the frontend needs
are well-designed endpoints where it can hit for data and commands.

The most common data standard of APIs nowadays is JSON. Ruby on Rails has a built-in support
for crafting JSON responses called jbuilder¹. It is good enough for not sophisticated endpoints - DSL
is simple, yet powerful. It’s easy to use. The problem starts when you want to consume existing best
practices when it comes to crafting JSON responses.

Jbuilder power lies in its genericness - it allows you to craft any JSON response. If you want to use a
community standard, you’re left on your own. In this chapter you’ll learn about alternatives which
allow you to use JSON API² specification easily.

Why JSON API?

You can certainly specify and implement your own convention of structuring JSON responses. But
there is the same problem with reinventing libraries and tools - you’ll most likely will come with an
implementation which is inferior than some industry standard. You can also have problem inside
the team - each new team member will most likely be confused by the custom solution. You’ll need
to reintroduce these concepts every time you’ll have a new colleague in your team.

JSON API solves many problems and comes with benefits:

• This is a standard. That means every developer who’ve worked with JSON API before will be
familiar with it.

• There are client-side libraries which excel at parsing the resulting data. That means you need
to write less code on the frontend side to process your endpoint responses.

• You don’t need to reinvent the wheel. Somehow problematic cases like reporting of multiple
errors or passing metadata not being the part of a resource are solved in an elegant way in
JSON API.

• It is easy to implement more HATEOAS³-ish approach with JSON API, thanks to how a spec
is designed. It comes with many benefits, especially you don’t need to keep knowledge about
endpoints on the frontend side. It “discovers” them by issuing HTTP calls to the backend as
needed.

¹https://github.com/rails/jbuilder
²http://jsonapi.org
³https://en.wikipedia.org/wiki/HATEOAS

1

https://github.com/rails/jbuilder
http://jsonapi.org
https://en.wikipedia.org/wiki/HATEOAS
https://github.com/rails/jbuilder
http://jsonapi.org
https://en.wikipedia.org/wiki/HATEOAS

Prepare JSON API endpoints for your API 2

I personally see no need of crafting my own JSON standard for applications. Before JSON API and
similar specs I had a bad time with some decisions I’ve made during the process.

JSON API in Rails

There are many supported server-side Ruby libraries⁴ that can help you with implementing
endpoints conforming JSON API specification. Popular AMS (a.k.a. ActiveModel Serializers)⁵ is
coming with JSON API adapter in release candidate (RC) releases. Since you’ll be likely looking
for something stable, there is a library called jsonapi-serializers⁶ that’ll be used in this chapter.

The main idea behind creating proper responses (not only JSON API-compilant!) is all about
promoting the concern of generating a resource representation to an object. Such objects (often called
serializers or, more generic, presenters) are responsible for taking the resource object and create a
representation out of it. Libraries like AMS or jsonapi-serializers are often just providing the
DSL for such objects and an (usually private) implementation of serializing resource fields to the
target format.

Knowing so, all you need to do is implementing such objects and use them as a JSON responses.
There’s more, though - like setting the media type. More on that later.

Example Relationships

To see how it can work in a real world example, let’s create something more sophisticated than just
one model. This is because explaining how to make JSON API without showing how to construct
relationships is not complete at all.

Let’s change the context a bit. Let’s assume you have following models:

• Dish, which is a description of meal you can eat in the restaurant. It belongs to many orders.
• Order which has many dishes.
• Waiter which has many orders.
• Tip which belongs to an order.

This structure will be used to describe the whole process of creating serializers for your application.

Schema used for this examples

To make everything clear I provide a schema that was generated by my Rails app after applying
migrations I made to model those resources. I’m using PostgreSQL here with built-in UUID type
and UUID generations capabilities to make my work easier:

⁴http://jsonapi.org/implementations/#server-libraries-ruby
⁵https://github.com/rails-api/active_model_serializers
⁶https://github.com/fotinakis/jsonapi-serializers

http://jsonapi.org/implementations/#server-libraries-ruby
https://github.com/rails-api/active_model_serializers
https://github.com/fotinakis/jsonapi-serializers
http://jsonapi.org/implementations/#server-libraries-ruby
https://github.com/rails-api/active_model_serializers
https://github.com/fotinakis/jsonapi-serializers

Prepare JSON API endpoints for your API 3

1 ActiveRecord::Schema.define(version: 20160314192757) do

2

3 # These are extensions that must be enabled in order to support this database

4 enable_extension "plpgsql"

5 enable_extension "pgcrypto"

6

7 create_table "dishes", id: :uuid, default: "gen_random_uuid()", force: :cascad\

8 e do |t|

9 t.string "name", null: false

10 t.decimal "price", null: false

11 t.text "description", null: false

12 t.datetime "created_at", null: false

13 t.datetime "updated_at", null: false

14 end

15

16 add_index "dishes", ["name"], name: "index_dishes_on_name", unique: true, usin\

17 g: :btree

18

19 create_table "order_dishes", id: :uuid, default: "gen_random_uuid()", force: :\

20 cascade do |t|

21 t.uuid "order_id", null: false

22 t.uuid "dish_id", null: false

23 t.datetime "created_at", null: false

24 t.datetime "updated_at", null: false

25 end

26

27 add_index "order_dishes", ["order_id", "dish_id"], name: "index_order_dishes_o\

28 n_order_id_and_dish_id", unique: true, using: :btree

29

30 create_table "orders", id: :uuid, default: "gen_random_uuid()", force: :cascad\

31 e do |t|

32 t.uuid "waiter_id", null: false

33 t.datetime "created_at", null: false

34 t.datetime "updated_at", null: false

35 end

36

37 create_table "tips", id: :uuid, default: "gen_random_uuid()", force: :cascade \

38 do |t|

39 t.uuid "order_id", null: false

40 t.decimal "amount", null: false

41 t.datetime "created_at", null: false

42 t.datetime "updated_at", null: false

Prepare JSON API endpoints for your API 4

43 end

44

45 create_table "waiters", id: :uuid, default: "gen_random_uuid()", force: :casca\

46 de do |t|

47 t.string "name", null: false

48 t.datetime "created_at", null: false

49 t.datetime "updated_at", null: false

50 end

51

52 add_index "waiters", ["name"], name: "index_waiters_on_name", unique: true, us\

53 ing: :btree

54

55 add_foreign_key "order_dishes", "dishes", on_delete: :cascade

56 add_foreign_key "order_dishes", "orders", on_delete: :cascade

57 add_foreign_key "orders", "waiters", on_delete: :cascade

58 add_foreign_key "tips", "orders", on_delete: :cascade

59 end

Installing jsonapi-serializers

To install jsonapi-serializers you need to follow a classic way of installing dependencies in Rails.
Just add it to your Gemfile:

1 gem 'jsonapi-serializers', '~> 0.6.5'

Then, run bundle install. After that step you should be able to work with the library.

Crafting a serializer

To create a serializer, you need to create a plain old Ruby class and include JSONAPI::Serializer
module to it:

1 class WaiterSerializer

2 include JSONAPI::Serializer

3 end

This is enough to make the most basic serialization:

Prepare JSON API endpoints for your API 5

1 waiter = Waiter.create!(name: "Mark")

2 # #<Waiter id: "fb936012-dd61-4b06-aeba-13def948edb9", name: "Mark",

3 # created_at: "2016-03-14 19:58:50", updated_at: "2016-03-14 19:58:50">

4

5 pp JSONAPI::Serializer.serialize(waiter)

6 # {"data"=>

7 # {"id"=>"fb936012-dd61-4b06-aeba-13def948edb9",

8 # "type"=>"waiters",

9 # "attributes"=>{"name"=>"Mark"},

10 # "links"=>{"self"=>"/waiters/fb936012-dd61-4b06-aeba-13def948edb9"}}}

As you can see there is a default self link defined with all fields as attributes of your response.
You can provide a list of attributes serialized by yourself:

1 class WaiterSerializer

2 include JSONAPI::Serializer

3 attributes :name, :created_at, :updated_at

4 end

To obtain the following result:

1 pp JSONAPI::Serializer.serialize(waiter)

2 # {"data"=>

3 # {"id"=>"fb936012-dd61-4b06-aeba-13def948edb9",

4 # "type"=>"waiters",

5 # "attributes"=>

6 # {"name"=>"Mark",

7 # "created-at"=>Mon, 14 Mar 2016 19:58:50 UTC +00:00,

8 # "updated-at"=>Mon, 14 Mar 2016 19:58:50 UTC +00:00},

9 # "links"=>{"self"=>"/waiters/fb936012-dd61-4b06-aeba-13def948edb9"}}}

Of course you can use methods from Waiter and serialize it too:

Prepare JSON API endpoints for your API 6

1 class Waiter < ActiveRecord::Base

2 has_many :orders,

3 dependent: :destroy

4

5 def tips_total

6 orders.map do |order|

7 (order.tip || NoTip.new).amount

8 end.sum(BigDecimal.new(0))

9 end

10 end

1 class WaiterSerializer

2 include JSONAPI::Serializer

3 attributes :name, :created_at, :updated_at, :tips_total

4 end

1 pp JSONAPI::Serializer.serialize(waiter)

2 #{"data"=>

3 # {"id"=>"fb936012-dd61-4b06-aeba-13def948edb9",

4 # "type"=>"waiters",

5 # "attributes"=>

6 # {"name"=>"Mark",

7 # "created-at"=>Mon, 14 Mar 2016 19:58:50 UTC +00:00,

8 # "updated-at"=>Mon, 14 Mar 2016 19:58:50 UTC +00:00,

9 # "tips-total"=>#<BigDecimal:7fea18ea27c0,'0.0',9(27)>},

10 # "links"=>{"self"=>"/waiters/fb936012-dd61-4b06-aeba-13def948edb9"}}}}

So far so good. You can also create a dynamic attribute on the serializer side:

1 class WaiterSerializer

2 include JSONAPI::Serializer

3

4 attributes :name, :created_at, :updated_at, :tips_total

5

6 attribute :polite_name do

7 "Mr/Ms. #{object.name}"

8 end

9 end

Prepare JSON API endpoints for your API 7

1 pp JSONAPI::Serializer.serialize(waiter)

2 #{"data"=>

3 # {"id"=>"fb936012-dd61-4b06-aeba-13def948edb9",

4 # "type"=>"waiters",

5 # "attributes"=>

6 # {"name"=>"Mark",

7 # "created-at"=>Mon, 14 Mar 2016 19:58:50 UTC +00:00,

8 # "updated-at"=>Mon, 14 Mar 2016 19:58:50 UTC +00:00,

9 # "tips-total"=>#<BigDecimal:7fea18ea27c0,'0.0',9(27)>},

10 # "links"=>{"self"=>"/waiters/fb936012-dd61-4b06-aeba-13def948edb9"}}}

That’s all about attributes. But JSON API really shines when it comes to defining links and
relationships. Let’s take a look.

Defining relationships between resources

To define a relationship in the simplest case you don’t even need to provide a serializer for the
relationship. By default only links to resources are provided:

1 class OrderSerializer

2 include JSONAPI::Serializer

3

4 has_many :dishes

5 has_one :tip

6 end

1 order = Order.first

2 # #<Order id: "d212a3cd-9bec-4147-aa99-16adbf14cf65",

3 # waiter_id: "12423d77-613d-47ea-945f-d275d9d5b960",

4 # created_at: "2016-03-14 20:18:34", updated_at: "2016-03-14 20:18:34">

5

6 pp JSONAPI::Serializer.serialize(order)

7

8 #{"data"=>

9 # {"id"=>"d212a3cd-9bec-4147-aa99-16adbf14cf65",

10 # "type"=>"orders",

11 # "links"=>{"self"=>"/orders/d212a3cd-9bec-4147-aa99-16adbf14cf65"},

12 # "relationships"=>

13 # {"tip"=>

14 # {"links"=>

Prepare JSON API endpoints for your API 8

15 # {"self"=>

16 # "/orders/d212a3cd-9bec-4147-aa99-16adbf14cf65/relationships/tip",

17 # "related"=>"/orders/d212a3cd-9bec-4147-aa99-16adbf14cf65/tip"}},

18 # "dishes"=>

19 # {"links"=>

20 # {"self"=>

21 # "/orders/d212a3cd-9bec-4147-aa99-16adbf14cf65/relationships/dishes",

22 # "related"=>"/orders/d212a3cd-9bec-4147-aa99-16adbf14cf65/dishes"}}}}}

As you can see, there are two links generated for each relationship - self which is formatted in a
way that is not quite useful for most Rails apps and related which makes a lot more sense. You can
either get rid of the self link for associations:

1 class OrderSerializer

2 include JSONAPI::Serializer

3

4 has_many :dishes

5 has_one :tip

6

7 def relationship_self_link(_)

8 nil

9 end

10 end

Or provide something having more sense than the default in Rails:

1 class OrderSerializer

2 include JSONAPI::Serializer

3

4 has_many :dishes

5 has_one :tip

6

7 def relationship_self_link(relationship_name)

8 # for "dishes" relation it'll be "/dishes"

9 "/#{relationship_name}" # index path for resources?

10 end

11 end

Or, even better - provide Rails’ URL helpers and stop relying on conventions:

Prepare JSON API endpoints for your API 9

1 class RailsBaseSerializer

2 include JSONAPI::Serializer

3

4 protected

5 def url_adapter

6 Rails.application.routes.url_helpers

7 end

8 end

9

10 class OrderSerializer < RailsBaseSerializer

11 has_many :dishes

12 has_one :tip

13

14 def self_link

15 url_adapter.order_path(id)

16 end

17

18 def relationship_self_link(relationship_name)

19 case relationship_name

20 when "dishes" then url_adapter.dishes_path

21 when "tip" then url_adapter.order_tip_path(id)

22 else nil

23 end

24 end

If that’s your kind of thing you can also start to serve URLs, not paths. It is especially useful if you
have multiple services (a.k.a. microservices app) so there are URLs which can span many domains /
subdomains.

You can also specify how relationship will be loaded. For example for Waiter you can do:

1 class OrderSerializer < RailsBaseSerializer

2 has_many :dishes

3 has_one :tip

4 has_one :waiter do

5 Waiter.find_by(object.waiter_id)

6 end

7

8 def self_link

9 url_adapter.order_path(id)

10 end

11

12 def relationship_self_link(relationship_name)

Prepare JSON API endpoints for your API 10

13 # ...

14 end

15 end

1 pp JSONAPI::Serializer.serialize(order)

2

3 #{"data"=>

4 # {"id"=>"d212a3cd-9bec-4147-aa99-16adbf14cf65",

5 # "type"=>"orders",

6 # "links"=>{"self"=>"/orders/d212a3cd-9bec-4147-aa99-16adbf14cf65"},

7 # "relationships"=>

8 # {"tip"=>

9 # {"links"=>

10 # {"self"=>

11 # "/orders/d212a3cd-9bec-4147-aa99-16adbf14cf65/relationships/tip",

12 # "related"=>"/orders/d212a3cd-9bec-4147-aa99-16adbf14cf65/tip"}},

13 # "waiter"=>

14 # {"links"=>

15 # {"self"=>

16 # "/orders/d212a3cd-9bec-4147-aa99-16adbf14cf65/relationships/waiter",

17 # "related"=>"/orders/d212a3cd-9bec-4147-aa99-16adbf14cf65/waiter"}},

18 # "dishes"=>

19 # {"links"=>

20 # {"self"=>

21 # "/orders/d212a3cd-9bec-4147-aa99-16adbf14cf65/relationships/dishes",

22 # "related"=>"/orders/d212a3cd-9bec-4147-aa99-16adbf14cf65/dishes"}}}}}

Just in Rails there are conventions about relationships - by default they’ll be searched under the
same method as relationship name.

It’s great to have your relationship defined in such shallow way. But there are moments when
you need more deep tree as a response. You can achieve exactly that using include option while
serializing.

First of all, you need to prepare a relationship serializer. By default jsonapi-serializers follows
the convention that for a given resource named Foo the name of its serializer is FooSerializer. That
can be changed of course - refer to docs for more details.

Prepare JSON API endpoints for your API 11

1 class DishSerializer

2 include JSONAPI::Serializer

3

4 attributes :name, :price, :description

5 end

Then you can pass include: ['dishes'] as a second argument of serialize while serializing
Order:

1 order = Order.preload(:dishes).first

2 pp JSONAPI::Serializer.serialize(order, include: ['dishes'])

3

4 #{"data"=>

5 # {"id"=>"d212a3cd-9bec-4147-aa99-16adbf14cf65",

6 # "type"=>"orders",

7 # "links"=>{"self"=>"/orders/d212a3cd-9bec-4147-aa99-16adbf14cf65"},

8 # "relationships"=>

9 # {"tip"=>

10 # {"links"=>

11 # {"self"=>

12 # "/orders/d212a3cd-9bec-4147-aa99-16adbf14cf65/relationships/tip",

13 # "related"=>"/orders/d212a3cd-9bec-4147-aa99-16adbf14cf65/tip"}},

14 # "waiter"=>

15 # {"links"=>

16 # {"self"=>

17 # "/orders/d212a3cd-9bec-4147-aa99-16adbf14cf65/relationships/waiter",

18 # "related"=>"/orders/d212a3cd-9bec-4147-aa99-16adbf14cf65/waiter"}},

19 # "dishes"=>

20 # {"links"=>

21 # {"self"=>

22 # "/orders/d212a3cd-9bec-4147-aa99-16adbf14cf65/relationships/dishes",

23 # "related"=>"/orders/d212a3cd-9bec-4147-aa99-16adbf14cf65/dishes"},

24 # "data"=>

25 # [{"type"=>"dishes", "id"=>"b97c5cd3-e431-4f8d-a36e-77120230c9de"}]}}},

26 # "included"=>

27 # [{"id"=>"b97c5cd3-e431-4f8d-a36e-77120230c9de",

28 # "type"=>"dishes",

29 # "attributes"=>

30 # {"name"=>"Pasta",

31 # "price"=>"#<BigDecimal:7fa037a39a38,'0.8E1',9(18)>",

32 # "description"=>"Tasty pasta"},

33 # "links"=>{"self"=>"/dishes/b97c5cd3-e431-4f8d-a36e-77120230c9de"}}]}

Prepare JSON API endpoints for your API 12

As you can see, relationships is populated with data identifiers (only id and type there). There is
a new section called included where full resource descriptions are available.

This distinction between attributes, relationships, links and included resources is a great thing. Some
clients may be unaware about any of those sections and will propably still do just fine.

I’ve used .preload(:dishes) while getting the first order. It is because I know I’ll use dishes

relationship really soon and I want to avoid 2 queries. That’s a very good practice to avoid
performance problems, especially if your resources count tend to be big.

Read more in bonus chapter: 3 ways to do eager loading (preloading) in Rails 3 & 4

Adding metadata to your response

There is also a possibility to add arbitrary metadata to your responses. It is especially useful if you’d
like to provide some kind of pagination info or some off-the-wire data that can be still needed on
the view.

For example in case of synchronization between frontend and backend; we return timestamp telling
how far the data is synchronized. Next requests from frontend include those timestamp.

Our example contains more business related metadata.

1 class OrderSerializer < RailsBaseSerializer

2 include JSONAPI::Serializer

3

4 has_one :tip

5 has_many :dishes

6

7 has_one :waiter do

8 Waiter.find_by(object.waiter_id)

9 end

10

11 def meta

12 { "most_popular_dish_id" => Dish.most_popular.id }

13 end

14

15 def self_link

16 url_adapter.order_path(id)

17 end

18 end

And the result:

Prepare JSON API endpoints for your API 13

1 order = Order.first

2 pp JSONAPI::Serializer.serialize(order)

3

4 #{"data"=>

5 # {"id"=>"d212a3cd-9bec-4147-aa99-16adbf14cf65",

6 # "type"=>"orders",

7 # "links"=>{"self"=>"/orders/d212a3cd-9bec-4147-aa99-16adbf14cf65"},

8 # "relationships"=>

9 # {"tip"=>

10 # {"links"=>

11 # {"self"=>

12 # "/orders/d212a3cd-9bec-4147-aa99-16adbf14cf65/relationships/tip",

13 # "related"=>"/orders/d212a3cd-9bec-4147-aa99-16adbf14cf65/tip"}},

14 # "waiter"=>

15 # {"links"=>

16 # {"self"=>

17 # "/orders/d212a3cd-9bec-4147-aa99-16adbf14cf65/relationships/waiter",

18 # "related"=>"/orders/d212a3cd-9bec-4147-aa99-16adbf14cf65/waiter"}},

19 # "dishes"=>

20 # {"links"=>

21 # {"self"=>

22 # "/orders/d212a3cd-9bec-4147-aa99-16adbf14cf65/relationships/dishes",

23 # "related"=>"/orders/d212a3cd-9bec-4147-aa99-16adbf14cf65/dishes"}}},

24 # "meta"=>{"most_popular_dish"=>"b97c5cd3-e431-4f8d-a36e-77120230c9de"}}}

The best part of JSON API is that you don’t need to implement all features that are expected and
covered by the spec. You can add features iteratively and you can be sure that most things will be
achievable out of the box following the spec. No bikeshedding and an additional benefit that there
are specialized clients to make your work even easier on the frontend side!

Integrating jsonapi-serializers with controllers

Before we’ve just seen howwe can check the serializing results inside the Rails console. But really the
biggest question is - how to integrate jsonapi-serializerswith controllers? Apart from generating
responses

1 render json: JSONAPI::Serializer.serialize(a_thing)

you need to take care of the valid content type.

Prepare JSON API endpoints for your API 14

JSON API specification specifies⁷ that all requests to JSON API endpoints should have a content
type application/vnd.api+json. The same with responses - your requests should have applica-

tion/vnd.api+json in both Accept and Content-Type headers.

Your API must respond with the same Content-Type when sending back JSON API-compliant
responses. This must be configured in your Rails application.

It is a little inconvenient, but powerful. Just think about it - if you have an API which is not
conforming JSON API spec and your clients still use it, all you need to do is to provide yet another
block to your respond_to. Your old API will still operate normally, but you’ll be able to accept
requests which are interested in JSONAPI format instead the old one. It is a natural way to introduce
JSON API endpoints iteratively in your code!

So, let’s do it. First of all, we need to tell Rails that there will be a new content type of requests and
we’ll call it :jsonapi. Put it inside your config/initializers/mime_types.rb:

1 Mime::Type.register "application/vnd.api+json", :jsonapi

Remember to restart the server after introducing this (and next) changes - otherwise they won’t get
loaded.

Right now you’ve registered a new content type. You can use it in your respond_to blocks like this:

1 class ExampleController < ApplicationController

2 def index

3 respond_to do |format|

4 format.jsonapi do

5 # ...

6 end

7 end

8 end

9 end

This is not the end, unfortunately. You’ll be most likely using JSON as your parameters for
POST/PUT/DELETE params in requests. Rails cannot figure out how to parse such parameters from
requests coming with application/vnd.api+json content type. We need to introduce the parser
for our parameters.

The parameters parsing is done by one of Rails middlewares. You can get a list of them by running
the bundle exec rake middleware command:

⁷http://jsonapi.org/format/#content-negotiation

http://jsonapi.org/format/#content-negotiation
http://jsonapi.org/format/#content-negotiation

Prepare JSON API endpoints for your API 15

1 bundle exec rake middleware

2

3 use Rack::Sendfile

4 use ActionDispatch::Static

5 use Rack::Lock

6 use #<ActiveSupport::Cache::Strategy::LocalCache::Middleware:0x007f960bc4fd58>

7 use Rack::Runtime

8 use Rack::MethodOverride

9 use ActionDispatch::RequestId

10 use Rails::Rack::Logger

11 use ActionDispatch::ShowExceptions

12 use WebConsole::Middleware

13 use ActionDispatch::DebugExceptions

14 use ActionDispatch::RemoteIp

15 use ActionDispatch::Reloader

16 use ActionDispatch::Callbacks

17 use ActiveRecord::Migration::CheckPending

18 use ActiveRecord::ConnectionAdapters::ConnectionManagement

19 use ActiveRecord::QueryCache

20 use ActionDispatch::Cookies

21 use ActionDispatch::Session::CookieStore

22 use ActionDispatch::Flash

23 use ActionDispatch::ParamsParser

24 use Rack::Head

25 use Rack::ConditionalGet

26 use Rack::ETag

27 run FrontendFriendlyRails::Application.routes

The ActionDispatch::ParamsParser is responsible for parsing parameters. What you need to do is
to swap this middleware which Rails provide by default with the new one containing parser you
provide. To cut story short, put the following piece of code in config/initializers/mime_types.rb:

1 # substitute YourAppName with real name from config/application.rb

2 middlewares = YourAppName::Application.config.middleware

3 middlewares.swap(ActionDispatch::ParamsParser, ActionDispatch::ParamsParser, {

4 Mime::Type.lookup('application/vnd.api+json') => lambda do |body|

5 ActiveSupport::JSON.decode(body)

6 end

7 })

Let’s take a look at this code in a step by step manner:

Prepare JSON API endpoints for your API 16

1. First of all, the variable called middlewares is created. It is an object of MiddlewareStackProxy⁸
type which represents a chain of your loaded middlewares.

2. swap is a function to replace the chosen middleware with another middleware. In this use case
we’re replacing the default ActionDispatch::ParamsParser middleware with the same type
of middleware, but we’re recreating it with custom arguments. swap also takes care of putting
the middleware in the same place that the previous middleware sat before - that can avoid us
subtle errors that could be possible with wrong order of middlewares.

3. The parsers object is keyed with identifiers of a content type which can be accessed using
Mime::Type.lookup method. A value is a lambda (an in-place function) that will be called
upon request’s body every time the new request arrives - in this case it is just calling method
for parsing the body as JSON. The result should be an object representing parameters.

You can read more about this in this blogpost.

After those steps you’re ready to issue requests in an JSON API formats from your frontend. But
first, create endpoints!

1 class ApplicationController

2 private

3

4 def jsonapi_collection(collection, options = {})

5 JSONAPI::Serializer.serialize(collection, options.merge(is_collection: true))

6 end

7

8 def jsonapi_resource(resource, options = {})

9 JSONAPI::Serializer.serialize(resource, options)

10 end

11

12 # Consult http://jsonapi.org/format/#error-objects for more sophisticated resp\

13 onses.

14 def jsonapi_error(*error_objects)

15 {

16 errors: error_objects

17 }

18 end

19 end

20

21 class OrdersController < ApplicationController

22 def index

23 respond_to do |format|

24 format.jsonapi { render json: jsonapi_collection(all_orders) }

⁸http://api.rubyonrails.org/classes/Rails/Configuration/MiddlewareStackProxy.html

http://api.rubyonrails.org/classes/Rails/Configuration/MiddlewareStackProxy.html
http://api.rubyonrails.org/classes/Rails/Configuration/MiddlewareStackProxy.html

Prepare JSON API endpoints for your API 17

25 # ...

26 end

27 end

28

29 def show

30 order = Order.find(params[:id])

31 respond_to do |format|

32 format.jsonapi { render json: jsonapi_resource(order) }

33 # ...

34 end

35 rescue ActiveRecord::RecordNotFound => err

36 respond_to do |format|

37 format.jsonapi do

38 render json: jsonapi_error({ title: "RecordNotFound",

39 detail: err.message }),

40 status: :not_found

41 end

42 # ...

43 end

44 end

45

46 private

47

48 def all_orders

49 Order.preload(:tip, :dishes)

50 end

51 end

As you can see, it is very similar to what we did in Rails console. The only thing is that you need
to craft error messages by yourself. It is made by the jsonapi_error method in the code above. But
in fact it is very easy so you should not have a problem with the format of errors⁹ described in the
JSON API spec. Just remember both data and errors cannot be together in one response!

Configuring clients to issue JSON API requests

Of course your client needs also to be aware that you’ll be working with JSON API. All you need
to do is providing appropriate headers. Examples here will be showing how to do it with two most
popular options with Rails - jQuery & more modern fetch API¹⁰.

⁹http://jsonapi.org/format/#error-objects
¹⁰https://developer.mozilla.org/en/docs/Web/API/Fetch_API

http://jsonapi.org/format/#error-objects
https://developer.mozilla.org/en/docs/Web/API/Fetch_API
http://jsonapi.org/format/#error-objects
https://developer.mozilla.org/en/docs/Web/API/Fetch_API

Prepare JSON API endpoints for your API 18

jQuery Client

1 // GET

2 $.ajax({

3 url: "/orders",

4 type: "GET",

5 headers: {

6 "Accept": "application/vnd.api+json",

7 "Content-Type": "application/vnd.api+json"

8 }

9 })

10

11 // POST

12 $.ajax({

13 url: "/orders",

14 type: "POST",

15 headers: {

16 "Accept": "application/vnd.api+json",

17 "Content-Type": "application/vnd.api+json"

18 },

19 processData: false,

20 data: JSON.stringify({ // Your parameters

21 order: {

22 // ...

23 }

24 })

25 })

26 // The same goes with PUT/PATCH/DELETE - just change type field accordingly.

WHATWG fetch client

1 // GET

2 fetch("/orders",

3 { method: "GET",

4 headers: {

5 'Accept': 'application/vnd.api+json',

6 'Content-Type': 'application/vnd.api+json'

7 }

8 });

9

10 // POST/PUT/PATCH/DELETE

11 fetch("/orders",

https://fetch.spec.whatwg.org/

Prepare JSON API endpoints for your API 19

12 { method: "POST", // or PUT, or PATCH, or DELETE

13 headers: {

14 'Accept': 'application/vnd.api+json',

15 'Content-Type': 'application/vnd.api+json'

16 },

17 body: JSON.stringify({ // Your parameters

18 order: {

19 // ...

20 }

21 })

22 });

Tips and tricks

• You can provide include option from parameters passed by the client. This way your clients
will be able to specify what they need from your endpoint. Just remember to whitelist those
collections.

• There is a good practice of providing a response for your root (/) path specifying all possible
endpoints you may hit in your API. There is also a JSON API object¹¹ that can be returned
in your response at the top level - try to include it at least on the root path as a part of your
response.

• Your API resources can be different from your real resources on the database. Take the
advantage over this fact and try to provide resources which speaks more with your frontend,
not backend.

• If you want to keep CSRF protection, meta top level is a great place to send your CSRF tokens.
You can do it like this:

1 class ResourceController

2 def show

3 # ...

4 render json: jsonapi_resource(resource, meta: csrf_meta_section)

5 end

6

7 private

8 def csrf_meta_section

9 { "csrf_token" => form_authenticity_token }

10 end

11 end

• Try to preload your relationships before serialization to avoid too many queries problem. Read
a bonus about it if you want to know more.

¹¹http://jsonapi.org/format/#document-jsonapi-object

http://jsonapi.org/format/#document-jsonapi-object
http://jsonapi.org/format/#document-jsonapi-object

Prepare JSON API endpoints for your API 20

Summary

JSON API can be integrated with Rails in an easy way thanks to the great jsonapi-serializers
gem. There is also some configuration effort needed to be made about defining a new content type,
but it is quite straightforward. You get a lot by sticking to the spec - you can grow your new API in
an iterative way in legacy codebases too, and you got a lot of ways you can extend your API in an
easy way, without inventing ways how to do it.

3 ways to do eager loading
(preloading) in Rails 3 & 4
You are probably already familiar with the method #includes for eager loading data from database
if you are using Rails and ActiveRecord. But do you know why you someties get few small and nice
SQL queries and sometimes one giant query with every table and column renamed? And do you
know about #preload and #eager_load which can help you achieve the same goal? Are you aware
of what changed in Rails 4 in that matter? If not, sit down and listen. This lesson won’t take long
and will help you clarify some aspects of eager loading that you might not be yet familiar with.

Let’s start with our Active Record class and associations definitions that we are going to use
throughout the whole post:

1 class User < ActiveRecord::Base

2 has_many :addresses

3 end

4

5 class Address < ActiveRecord::Base

6 belongs_to :user

7 end

And here is the seed data that will help us check the results of our queries:

1 rob = User.create!(name: "Robert Pankowecki", email: "robert@example.org")

2 bob = User.create!(name: "Bob Doe", email: "bob@example.org")

3

4 rob.addresses.create!(country: "Poland", city: "Wrocław", postal_code: "55-555",\

5 street: "Rynek")

6 rob.addresses.create!(country: "France", city: "Paris", postal_code: "75008", st\

7 reet: "8 rue Chambiges")

8 bob.addresses.create!(country: "Germany", city: "Berlin", postal_code: "10551", \

9 street: "Tiergarten")

Rails 3

Typically, when you want to use the eager loading feature you would use the #includes method,
which Rails encouraged you to use since Rails2 or maybe even Rails1 ;). And that works like a charm
doing 2 queries:

21

3 ways to do eager loading (preloading) in Rails 3 & 4 22

1 User.includes(:addresses)

2 # SELECT "users".* FROM "users"

3 # SELECT "addresses".* FROM "addresses" WHERE "addresses"."user_id" IN (1, 2)

So what are those two other methods for? First let’s see them in action.

1 User.preload(:addresses)

2 # SELECT "users".* FROM "users"

3 # SELECT "addresses".* FROM "addresses" WHERE "addresses"."user_id" IN (1, 2)

Apparently #preload behave just like #includes. Or is it the other way around? Keep reading to
find out.

And as for the #eager_load:

1 User.eager_load(:addresses)

2 # SELECT

3 # "users"."id" AS t0_r0, "users"."name" AS t0_r1, "users"."email" AS t0_r2, "us\

4 ers"."created_at" AS t0_r3, "users"."updated_at" AS t0_r4,

5 # "addresses"."id" AS t1_r0, "addresses"."user_id" AS t1_r1, "addresses"."count\

6 ry" AS t1_r2, "addresses"."street" AS t1_r3, "addresses"."postal_code" AS t1_r4,\

7 "addresses"."city" AS t1_r5, "addresses"."created_at" AS t1_r6, "addresses"."up\

8 dated_at" AS t1_r7

9 # FROM "users"

10 # LEFT OUTER JOIN "addresses" ON "addresses"."user_id" = "users"."id"

It is a completely different story, isn’t it? The whole mystery is that Rails has 2 ways of preloading
data. One is using separate db queries to obtain the addtional data. And one is using one query (with
left join) to get them all.

If you use #preload, it means you always want separate queries. If you use #eager_load you are
doing one query. So what is #includes for? It decides for you which way it is going to be. You
let Rails handle that decision. What is the decision based on, you might ask. It is based on query
conditions. Let’s see an example where #includes delegates to #eager_load so that there is one big
query only.

3 ways to do eager loading (preloading) in Rails 3 & 4 23

1 User.includes(:addresses).where("addresses.country = ?", "Poland")

2 User.eager_load(:addresses).where("addresses.country = ?", "Poland")

3

4 # SELECT

5 # "users"."id" AS t0_r0, "users"."name" AS t0_r1, "users"."email" AS t0_r2, "use\

6 rs"."created_at" AS t0_r3, "users"."updated_at" AS t0_r4,

7 # "addresses"."id" AS t1_r0, "addresses"."user_id" AS t1_r1, "addresses"."countr\

8 y" AS t1_r2, "addresses"."street" AS t1_r3, "addresses"."postal_code" AS t1_r4, \

9 "addresses"."city" AS t1_r5, "addresses"."created_at" AS t1_r6, "addresses"."upd\

10 ated_at" AS t1_r7

11 # FROM "users"

12 # LEFT OUTER JOIN "addresses"

13 # ON "addresses"."user_id" = "users"."id"

14 # WHERE (addresses.country = 'Poland')

In the last example Rails detected that the condition in where clause is using columns from preloaded
(included) table names. So #includes delegates the job to #eager_load. You can always achieve the
same result by using the #eager_load method directly.

What happens if you instead try to use #preload explicitly?

1 User.preload(:addresses).where("addresses.country = ?", "Poland")

2 # SELECT "users".* FROM "users" WHERE (addresses.country = 'Poland')

3 #

4 # SQLite3::SQLException: no such column: addresses.country

We get an exception because we haven’t joined users table with addresses table in any way.

Is this intention revealing?

If you look at our example again

1 User.includes(:addresses).where("addresses.country = ?", "Poland")

you might wonder, what is the original intention of this code. What did the author mean by that?
What are we trying to achieve here with our simple Rails code:

• Give me users with polish addresses and preload only polish addresses
• Give me users with polish addresses and preload all of their addresses
• Give me all users and their polish addresses.

Do you know which goal we achieved? The first one. Let’s see if we can achieve the second and the
third ones.

3 ways to do eager loading (preloading) in Rails 3 & 4 24

Is #preload any good?

Our current goal: Give me users with polish addresses but preload all of their addresses. I need to
know all addreeses of people whose at least one address is in Poland.

Weknow thatwe need only userswith polish addresses. That itself is easy: User.joins(:addresses).where("addresses.country
= ?", "Poland") and we know that we want to eager load the addresses so we also need
includes(:addresses) part right?

1 r = User.joins(:addresses).where("addresses.country = ?", "Poland").includes(:ad\

2 dresses)

3

4 r[0]

5 #=> #<User id: 1, name: "Robert Pankowecki", email: "robert@example.org", create\

6 d_at: "2013-12-08 11:26:24", updated_at: "2013-12-08 11:26:24">

7

8 r[0].addresses

9 # [

10 # #<Address id: 1, user_id: 1, country: "Poland", street: "Rynek", postal_code\

11 : "55-555", city: "Wrocław", created_at: "2013-12-08 11:26:50", updated_at: "201\

12 3-12-08 11:26:50">

13 #]

Well, that didn’t work exactly like we wanted. We are missing the user’s second address that
expected to have this time. Rails still detected that we are using included table in where statement
and used #eager_load implementation under the hood. The only difference compared to previous
example is that is that Rails used INNER JOIN instead of LEFT JOIN, but for that query it doesn’t
even make any difference.

1 SELECT

2 "users"."id" AS t0_r0, "users"."name" AS t0_r1, "users"."email" AS t0_r2, "users\

3 "."created_at" AS t0_r3, "users"."updated_at" AS t0_r4,

4 "addresses"."id" AS t1_r0, "addresses"."user_id" AS t1_r1, "addresses"."country"\

5 AS t1_r2, "addresses"."street" AS t1_r3, "addresses"."postal_code" AS t1_r4, "a\

6 ddresses"."city" AS t1_r5, "addresses"."created_at" AS t1_r6, "addresses"."updat\

7 ed_at" AS t1_r7

8 FROM "users"

9 INNER JOIN "addresses"

10 ON "addresses"."user_id" = "users"."id"

11 WHERE (addresses.country = 'Poland')

This is that kind of situation where you can outsmart Rails and be explicit about what you want to
achieve by directly calling #preload instead of #includes.

3 ways to do eager loading (preloading) in Rails 3 & 4 25

1 r = User.joins(:addresses).where("addresses.country = ?", "Poland").preload(:add\

2 resses)

3 # SELECT "users".* FROM "users"

4 # INNER JOIN "addresses" ON "addresses"."user_id" = "users"."id"

5 # WHERE (addresses.country = 'Poland')

6

7 # SELECT "addresses".* FROM "addresses" WHERE "addresses"."user_id" IN (1)

8

9 r[0]

10 # [#<User id: 1, name: "Robert Pankowecki", email: "robert@example.org", created\

11 _at: "2013-12-08 11:26:24", updated_at: "2013-12-08 11:26:24">]

12

13 r[0].addresses

14 # [

15 # <Address id: 1, user_id: 1, country: "Poland", street: "Rynek", postal_code: \

16 "55-555", city: "Wrocław", created_at: "2013-12-08 11:26:50", updated_at: "2013-\

17 12-08 11:26:50">,

18 # <Address id: 3, user_id: 1, country: "France", street: "8 rue Chambiges", pos\

19 tal_code: "75008", city: "Paris", created_at: "2013-12-08 11:36:30", updated_at:\

20 "2013-12-08 11:36:30">]

21 #]

This is exactly what wewanted to achieve. Thanks to using #preloadwe are no longer mixing which
users we want to fetch with what data we would like to preload for them. And the queries are plain
and simple again.

Preloading subset of association

The goal of the next exercise is: Give me all users and their polish addresses.

To be honest, I never like preloading only a subset of association because some parts of your
application probably assume that it is fully loaded. It might only make sense if you are getting
the data to display it.

I prefer to add the condition to the association itself:

1 class User < ActiveRecord::Base

2 has_many :addresses

3 has_many :polish_addresses, conditions: {country: "Poland"}, class_name: "Addr\

4 ess"

5 end

And just preload it explicitely using one way:

3 ways to do eager loading (preloading) in Rails 3 & 4 26

1 r = User.preload(:polish_addresses)

2

3 # SELECT "users".* FROM "users"

4 # SELECT "addresses".* FROM "addresses" WHERE "addresses"."country" = 'Poland' A\

5 ND "addresses"."user_id" IN (1, 2)

6

7 r

8

9 # [

10 # <User id: 1, name: "Robert Pankowecki", email: "robert@example.org", created\

11 _at: "2013-12-08 11:26:24", updated_at: "2013-12-08 11:26:24">

12 # <User id: 2, name: "Bob Doe", email: "bob@example.org", created_at: "2013-12\

13 -08 11:26:25", updated_at: "2013-12-08 11:26:25">

14 #]

15

16 r[0].polish_addresses

17

18 # [

19 # #<Address id: 1, user_id: 1, country: "Poland", street: "Rynek", postal_code\

20 : "55-555", city: "Wrocław", created_at: "2013-12-08 11:26:50", updated_at: "201\

21 3-12-08 11:26:50">

22 #]

23

24 r[1].polish_addresses

25 # []

or another:

1 r = User.eager_load(:polish_addresses)

2

3 # SELECT "users"."id" AS t0_r0, "users"."name" AS t0_r1, "users"."email" AS t0_r\

4 2, "users"."created_at" AS t0_r3, "users"."updated_at" AS t0_r4,

5 # "addresses"."id" AS t1_r0, "addresses"."user_id" AS t1_r1, "addresses".\

6 "country" AS t1_r2, "addresses"."street" AS t1_r3, "addresses"."postal_code" AS \

7 t1_r4, "addresses"."city" AS t1_r5, "addresses"."created_at" AS t1_r6, "addresse\

8 s"."updated_at" AS t1_r7

9 # FROM "users"

10 # LEFT OUTER JOIN "addresses"

11 # ON "addresses"."user_id" = "users"."id" AND "addresses"."country" = 'Poland'

12

13 r

14 # [

3 ways to do eager loading (preloading) in Rails 3 & 4 27

15 # #<User id: 1, name: "Robert Pankowecki", email: "robert@example.org", create\

16 d_at: "2013-12-08 11:26:24", updated_at: "2013-12-08 11:26:24">,

17 # #<User id: 2, name: "Bob Doe", email: "bob@example.org", created_at: "2013-1\

18 2-08 11:26:25", updated_at: "2013-12-08 11:26:25">

19 #]

20

21 r[0].polish_addresses

22 # [

23 # #<Address id: 1, user_id: 1, country: "Poland", street: "Rynek", postal_code\

24 : "55-555", city: "Wrocław", created_at: "2013-12-08 11:26:50", updated_at: "201\

25 3-12-08 11:26:50">

26 #]

27

28 r[1].polish_addresses

29 # []

What should we do when we only know at runtime about the association conditions that we would
like to apply? I honestly don’t know. Please tell me in the comments if you found it out.

The ultimate question

You might ask: What is this stuff so hard? I am not sure but I think most ORMs are build to help
you construct single query and load data from one table. With eager loading the situation gest more
complicated and we want load multiple data from multiple tables with multiple conditions. In Rails
we are using chainable API to build 2 or more queries (in case of using #preload).

What kind of API would I love? I am thinking about something like:

1 User.joins(:addresses).where("addresses.country = ?", "Poland").preload do |user\

2 s|

3 users.preload(:addresses).where("addresses.country = ?", "Germany")

4 users.preload(:lists) do |lists|

5 lists.preload(:tasks).where("tasks.state = ?", "unfinished")

6 end

7 end

I hope you get the idea :) But this is just a dream. Let’s get back to reality…

Rails 4 changes

… and talk about what changed in Rails 4.

3 ways to do eager loading (preloading) in Rails 3 & 4 28

1 class User < ActiveRecord::Base

2 has_many :addresses

3 has_many :polish_addresses, -> {where(country: "Poland")}, class_name: "Addres\

4 s"

5 end

Rails now encourages you to use the new lambda syntax for defining association conditions. This is
very good because I have seen many times errors in that area where the condition were interpreted
only once when the class was loaded.

It is the same way you are encouraged to use lambda syntax or method syntax to express scope
conditions.

1 # Bad, Time.now would be always the time when the class was loaded

2 # You might not even spot the bug in development because classes are

3 # automatically reloaded for you after changes.

4 scope :from_the_past, where("happens_at <= ?", Time.now)

5

6 # OK

7 scope :from_the_past, -> { where("happens_at <= ?", Time.now) }

8

9 # OK

10 def self.from_the_past

11 where("happens_at <= ?", Time.now)

12 end

In our case the condition where(country: "Poland") is always the same, no matter wheter
interpreted dynamically or once at the beginning. But it is good that rails is trying to make the
syntax coherent in both cases (association and scope conditions) and protect us from the such kind
of bugs.

Now that we have the syntax changes in place, we can check for any differences in the behavior.

1 User.includes(:addresses)

2 # SELECT "users".* FROM "users"

3 # SELECT "addresses".* FROM "addresses" WHERE "addresses"."user_id" IN (1, 2)

4

5 User.preload(:addresses)

6 # SELECT "users".* FROM "users"

7 # SELECT "addresses".* FROM "addresses" WHERE "addresses"."user_id" IN (1, 2)

8

9 User.eager_load(:addresses)

10 # SELECT "users"."id" AS t0_r0, "users"."name" AS t0_r1, "users"."email" AS t0_\

3 ways to do eager loading (preloading) in Rails 3 & 4 29

11 r2, "users"."created_at" AS t0_r3, "users"."updated_at" AS t0_r4,

12 # "addresses"."id" AS t1_r0, "addresses"."user_id" AS t1_r1, "addresses"\

13 ."country" AS t1_r2, "addresses"."street" AS t1_r3, "addresses"."postal_code" AS\

14 t1_r4, "addresses"."city" AS t1_r5, "addresses"."created_at" AS t1_r6, "address\

15 es"."updated_at" AS t1_r7

16 # FROM "users"

17 # LEFT OUTER JOIN "addresses"

18 # ON "addresses"."user_id" = "users"."id"

Well, this looks pretty much the same. No surprise here. Let’s add the condition that caused us so
much trouble before:

1 User.includes(:addresses).where("addresses.country = ?", "Poland")

2

3 #DEPRECATION WARNING: It looks like you are eager loading table(s)

4 # (one of: users, addresses) that are referenced in a string SQL

5 # snippet. For example:

6 #

7 # Post.includes(:comments).where("comments.title = 'foo'")

8 #

9 # Currently, Active Record recognizes the table in the string, and knows

10 # to JOIN the comments table to the query, rather than loading comments

11 # in a separate query. However, doing this without writing a full-blown

12 # SQL parser is inherently flawed. Since we don't want to write an SQL

13 # parser, we are removing this functionality. From now on, you must explicitly

14 # tell Active Record when you are referencing a table from a string:

15 #

16 # Post.includes(:comments).where("comments.title = 'foo'").references(:comment\

17 s)

18 #

19 # If you don't rely on implicit join references you can disable the

20 # feature entirely by setting `config.active_record.disable_implicit_join_refere\

21 nces = true`. (

22

23 # SELECT "users"."id" AS t0_r0, "users"."name" AS t0_r1, "users"."email" AS t0_r\

24 2, "users"."created_at" AS t0_r3, "users"."updated_at" AS t0_r4,

25 # "addresses"."id" AS t1_r0, "addresses"."user_id" AS t1_r1, "addresses".\

26 "country" AS t1_r2, "addresses"."street" AS t1_r3, "addresses"."postal_code" AS \

27 t1_r4, "addresses"."city" AS t1_r5, "addresses"."created_at" AS t1_r6, "addresse\

28 s"."updated_at" AS t1_r7

29 # FROM "users"

30 # LEFT OUTER JOIN "addresses" ON "addresses"."user_id" = "users"."id"

31 # WHERE (addresses.country = 'Poland')

3 ways to do eager loading (preloading) in Rails 3 & 4 30

Wow, now that is quite a verbose deprection :) I recommend that you read it all because it explains
the situation quite accuratelly.

In other words, because Rails does not want to be super smart anymore and spy on our where

conditions to detect which algorithm to use, it expects our help. Wemust tell it that there is condition
for one of the tables. Like that:

1 User.includes(:addresses).where("addresses.country = ?", "Poland").references(:a\

2 ddresses)

I was wondering what would happen if we try to preload more tables but reference only one of
them:

1 User.includes(:addresses, :places).where("addresses.country = ?", "Poland").refe\

2 rences(:addresses)

3

4 # SELECT "users"."id" AS t0_r0, "users"."name" AS t0_r1, "users"."email" AS t0_\

5 r2, "users"."created_at" AS t0_r3, "users"."updated_at" AS t0_r4,

6 # "addresses"."id" AS t1_r0, "addresses"."user_id" AS t1_r1, "addresses"\

7 ."country" AS t1_r2, "addresses"."street" AS t1_r3, "addresses"."postal_code" AS\

8 t1_r4, "addresses"."city" AS t1_r5, "addresses"."created_at" AS t1_r6, "address\

9 es"."updated_at" AS t1_r7,

10 # "places"."id" AS t2_r0, "places"."user_id" AS t2_r1, "places"."name" A\

11 S t2_r2, "places"."created_at" AS t2_r3, "places"."updated_at" AS t2_r4

12 # FROM "users"

13 # LEFT OUTER JOIN "addresses" ON "addresses"."user_id" = "users"."id"

14 # LEFT OUTER JOIN "places" ON "places"."user_id" = "users"."id"

15 # WHERE (addresses.country = 'Poland')

I imagined that addresses would be loaded using the #eager_load algorithm (by doing LEFT JOIN)
and places would be loaded using the #preload algorithm (by doing separate query to get them)
but as you can see that’s not the case. Maybe they will change the behavior in the future.

Rails 4 does not warn you to use the #references method if you explicitely use #eager_load to get
the data and the executed query is identical:

1 User.eager_load(:addresses).where("addresses.country = ?", "Poland")

In other words, these two are the same:

3 ways to do eager loading (preloading) in Rails 3 & 4 31

1 User.includes(:addresses).where("addresses.country = ?", "Poland").references(:a\

2 ddresses)

3 User.eager_load(:addresses).where("addresses.country = ?", "Poland")

And if you try to use #preload, you still get the same exception:

1 User.preload(:addresses).where("addresses.country = ?", "Poland")

2 # SELECT "users".* FROM "users" WHERE (addresses.country = 'Poland')

3 #

4 # SQLite3::SQLException: no such column: addresses.country: SELECT "users".* FR\

5 OM "users" WHERE (addresses.country = 'Poland')

If you try to use the other queries that I showed you, they still work the same way in Rails 4:

1 # Give me users with polish addresses and preload all of their addresses

2 User.joins(:addresses).where("addresses.country = ?", "Poland").preload(:address\

3 es)

4

5 #Give me all users and their polish addresses.

6 User.preload(:polish_addresses)

Finally in Rails 4 there is at least some documentation for the methods, which Rails 3 has been
missing for years:

• #includes¹²
• #preload¹³
• #eager_load¹⁴

Summary

There are 3 ways to do eager loading in Rails:

• #includes

• #preload

• #eager_load

¹²http://api.rubyonrails.org/v4.0.1/classes/ActiveRecord/QueryMethods.html#method-i-includes
¹³http://api.rubyonrails.org/v4.0.1/classes/ActiveRecord/QueryMethods.html#method-i-preload
¹⁴http://api.rubyonrails.org/v4.0.1/classes/ActiveRecord/QueryMethods.html#method-i-eager_load

http://api.rubyonrails.org/v4.0.1/classes/ActiveRecord/QueryMethods.html#method-i-includes
http://api.rubyonrails.org/v4.0.1/classes/ActiveRecord/QueryMethods.html#method-i-preload
http://api.rubyonrails.org/v4.0.1/classes/ActiveRecord/QueryMethods.html#method-i-eager_load
http://api.rubyonrails.org/v4.0.1/classes/ActiveRecord/QueryMethods.html#method-i-includes
http://api.rubyonrails.org/v4.0.1/classes/ActiveRecord/QueryMethods.html#method-i-preload
http://api.rubyonrails.org/v4.0.1/classes/ActiveRecord/QueryMethods.html#method-i-eager_load

3 ways to do eager loading (preloading) in Rails 3 & 4 32

#includes delegates the job to #preload or #eager_load depending on the presence or absence of
condition related to one of the preloaded table.

#preload is using separate DB queries to get the data.

#eager_load is using one big query with LEFT JOIN for each eager loaded table.

In Rails 4 you should use #references combinedwith #includes if you have the additional condition
for one of the eager loaded table.

Creating new content types in Rails
4.2
This is a blogpost written by Marcin Grzywaczewski. It is available online on the Arkency Blog¹⁵.

While working on the application for React.js+Redux workshop¹⁶ I’ve decided to follow the JSON
API¹⁷ specification of responses for my API endpoints. Apart from a fact that following the spec
allowed me to avoid bikeshedding, there was also an interesting issue I needed to solve with Rails.

In JSONAPI specification there is a requirement about the Content-Type being set to an appropriate
value¹⁸. It’s great, because it allows generic clients to distinguish JSONAPI-compliant endpoints.
Not to mention you can serve your old API while hitting the endpoint with an application/json

Content-Type and have your new API responses crafted in an iterative way for the same endpoints.

While being a very good thing, there was a small problem I’ve needed to solve. First of all - how to
inform Rails that you’ll be using the new Content-Type and make it possible to use respond_to in
my controllers? And secondly - how to tell Rails that JSON API requests are very similar to JSON
requests, thus request params must be a JSON parsed from the request’s body?

I’ve managed to solve both problems and I’m happy with this solution. In this article I’d like to show
you how it can be done with Rails.

Registering the new Content-Type

First problem I needed to solve is usage of a new content type with Rails and registering it so Rails
would be aware that this new content type exists. This allows you to use this content type while
working with respond_to or respond_with inside your controllers - a thing that is very useful if
you happen to serve many responses dependent on the content type.

Fortunately this is very simple and Rails creators somehow expected this use case. If you create your
new Rails project there will be an initializer created which is perfect for this goal - config/initial-
izers/mime_types.rb.

All I needed to do here was to register a new content type and name it:

¹⁵http://blog.arkency.com/2016/03/creating-new-content-types-in-rails-4-dot-2/
¹⁶http://blog.arkency.com/2016/02/how-to-teach-react-dot-js-properly-a-quick-preview-of-wroc-love-dot-rb-workshop-agenda/
¹⁷http://blog.arkency.com/2016/02/how-and-why-should-you-use-json-api-in-your-rails-api/
¹⁸http://jsonapi.org/format/#content-negotiation

33

http://blog.arkency.com/2016/03/creating-new-content-types-in-rails-4-dot-2/
http://blog.arkency.com/2016/02/how-to-teach-react-dot-js-properly-a-quick-preview-of-wroc-love-dot-rb-workshop-agenda/
http://blog.arkency.com/2016/02/how-and-why-should-you-use-json-api-in-your-rails-api/
http://blog.arkency.com/2016/02/how-and-why-should-you-use-json-api-in-your-rails-api/
http://jsonapi.org/format/#content-negotiation
http://jsonapi.org/format/#content-negotiation
http://blog.arkency.com/2016/03/creating-new-content-types-in-rails-4-dot-2/
http://blog.arkency.com/2016/02/how-to-teach-react-dot-js-properly-a-quick-preview-of-wroc-love-dot-rb-workshop-agenda/
http://blog.arkency.com/2016/02/how-and-why-should-you-use-json-api-in-your-rails-api/
http://jsonapi.org/format/#content-negotiation

Creating new content types in Rails 4.2 34

1 # Be sure to restart your server when you modify this file.

2

3 Mime::Type.register "application/vnd.api+json", :jsonapi

4

5 # Add new mime types for use in respond_to blocks:

6 # Mime::Type.register "text/richtext", :rtf

This way I managed to use it with my controllers - jsonapi is available as a method of format given
by the respond_to block:

1 class EventsController < ApplicationController

2 def show

3 respond_to do |format|

4 format.jsonapi do

5 Event.find(params[:id]).tap do |event|

6 serializer = EventSerializer.new(self, event.conference_id)

7 render json: serializer.serialize(event)

8 end

9

10 format.all { head :bad_request }

11 end

12 end

13 end

That’s great! - I thought and I forgot about the issue. Then during preparations I’ve created a simple
JS client for my API to be used by workshop attendants:

1 const { fetch } = window;

2

3 function APIClient () {

4 const JSONAPIFetch = (method, url, options) => {

5 const headersOptions = {

6 method,

7 headers: {

8 'Accept': 'application/vnd.api+json',

9 'Content-Type': 'application/vnd.api+json'

10 }

11 };

12

13 return fetch(url, Object.assign({}, options, headersOptions));

14 };

15

Creating new content types in Rails 4.2 35

16 return {

17 get (url) {

18 const request = JSONAPIFetch("GET", url, {});

19 return request;

20 },

21 post (url, params) {

22 const request = JSONAPIFetch("POST", url,

23 { body: JSON.stringify(params) });

24 return request;

25 },

26 delete (url) {

27 const request = JSONAPIFetch("DELETE", url, {});

28 return request;

29 }

30 };

31 }

32

33 window.APIClient = APIClient();

Then I’ve decided to test it…

Specifying how params should be parsed -
ActionDispatch::ParamsParser middleware

Since I wanted to be sure that everything works correctly I gave a try to the APIClient I’ve just
created. I opened the browser’s console and issued the following call:

1 APIClient.post("/conferences", { conference:

2 { id: UUID.create().toString(),

3 name: "My new conference!" } });

Bam! I got the HTTP 400 status code. Confused, I’ve checked the Rails logs:

Creating new content types in Rails 4.2 36

1 Processing by ConferencesController#create as JSONAPI

2 Completed 400 Bad Request in 7ms

3

4 ActionController::ParameterMissing (param is missing or the value is empty: conf\

5 erence):

6 app/controllers/conferences_controller.rb:66:in `conference_params'

7 app/controllers/conferences_controller.rb:16:in `block (2 levels) in create'

8 app/controllers/conferences_controller.rb:13:in `create'

Oh well. I passed my params correctly, but somehow Rails cannot figure how to handle these
parameters. And if you think about it - why it should do it? For Rails this is a completely new
content type. Rails doesn’t know that this is a little more structured JSON request.

Apparently there is a Rack middleware that is responsible for parsing params depending on the
content type. It is called ActionDispatch::ParamsParser and its initializemethod accepts a Rack
app (which every middleware does, honestly) and an optional argument called parsers. In fact the
constructor is very simple I can copy it here:

1 # File actionpack/lib/action_dispatch/middleware/params_parser.rb, line 18

2 def initialize(app, parsers = {})

3 @app, @parsers = app, DEFAULT_PARSERS.merge(parsers)

4 end

As you can see there is a list of DEFAULT parsers and by populating this optional argument you
can provide your own parsers.

Rails loads this middleware by default without optional parameter set. What you need to do is to
unregister the “default” version Rails uses and register it again - this way with your custom code
responsible for parsing request parameters. I did it in config/initializers/mime_types.rb again:

1 # check app name in config/application.rb

2 middlewares = YourAppName::Application.config.middleware

3 middlewares.swap(ActionDispatch::ParamsParser, ActionDispatch::ParamsParser, {

4 Mime::Type.lookup('application/vnd.api+json') => lambda do |body|

5 ActiveSupport::JSON.decode(body)

6 end

7 })

Let’s take a look at this code in a step by step manner:

1. First of all, the variable called middlewares is created. It is an object of MiddlewareStack-
Proxy¹⁹ type which represents a chain of your loaded middlewares.

¹⁹http://api.rubyonrails.org/classes/Rails/Configuration/MiddlewareStackProxy.html

http://api.rubyonrails.org/classes/Rails/Configuration/MiddlewareStackProxy.html
http://api.rubyonrails.org/classes/Rails/Configuration/MiddlewareStackProxy.html
http://api.rubyonrails.org/classes/Rails/Configuration/MiddlewareStackProxy.html

Creating new content types in Rails 4.2 37

2. swap is a function to replace the chosen middleware with another middleware. In this use case
we’re replacing the default ActionDispatch::ParamsParser middleware with the same type
of middleware, but we’re recreating it with custom arguments. swap also takes care of putting
the middleware in the same place that the previous middleware sat before - that can avoid us
subtle errors that could be possible with wrong order of middlewares.

3. The parsers object is keyed with identifiers of a content type which can be accessed using
Mime::Type.lookupmethod. A value is a lambda that will be called upon request’s body every
time the new request arrives - in this case it is just callingmethod for parsing the body as JSON.
The result should be an object representing parameters.

As you can see this is quite powerful. This is a very primitive use case. But this approach is flexible
enough to extract parameters from any content type. This can be used to pass *.Plist files used by
Apple technologies as requests (I saw such use cases) and, in fact, anything. Waiting for someone
crazy enough to pass *.docx documents and extracting params out of it! :)

Summary

While new content types are often useful, there is a certain work needed to make it work correctly
with Rails. Fortunately there is a very simple way to register new document types - and as long as
you don’t need to parse parameters out of it is easy.

As it turns out there is a nice way of defining your own parsers inside Rails. I was quite surprised
that I had this issue (well, Rails ismagic after all! :)), but thanks to ActionDispatch::ParamsParser

being written in a way adhering to OCP²⁰ I managed to do it without monkey patching or other
cumbersome solutions.

If you know a better way to achieve the same thing, or a gem that makes it easier - let us know. You
can write a comment or catch us on Twitter²¹ or write an e-mail²² to us.

²⁰https://en.wikipedia.org/wiki/Open/closed_principle
²¹http://twitter.com/arkency
²²mailto:dev@arkency.com

https://en.wikipedia.org/wiki/Open/closed_principle
http://twitter.com/arkency
mailto:dev@arkency.com
https://en.wikipedia.org/wiki/Open/closed_principle
http://twitter.com/arkency
mailto:dev@arkency.com

	Table of Contents
	Prepare JSON API endpoints for your API
	Why JSON API?
	JSON API in Rails
	Example Relationships
	Schema used for this examples
	Installing jsonapi-serializers
	Crafting a serializer
	Defining relationships between resources
	Integrating jsonapi-serializers with controllers
	Configuring clients to issue JSON API requests
	Tips and tricks
	Summary

	3 ways to do eager loading (preloading) in Rails 3 & 4
	Rails 3
	Is this intention revealing?
	Is #preload any good?
	Preloading subset of association
	The ultimate question
	Rails 4 changes
	Summary

	Creating new content types in Rails 4.2
	Registering the new Content-Type
	Specifying how params should be parsed - ActionDispatch::ParamsParser middleware
	Summary

